Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
Molecular machine learning has been maturing rapidly over the last few years.Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem
translated by 谷歌翻译
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make datadriven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
translated by 谷歌翻译
We consider a long-term average profit maximizing admission control problem in an M/M/1 queuing system with a known arrival rate but an unknown service rate. With a fixed reward collected upon service completion and a cost per unit of time enforced on customers waiting in the queue, a dispatcher decides upon arrivals whether to admit the arriving customer or not based on the full history of observations of the queue-length of the system. \cite[Econometrica]{Naor} showed that if all the parameters of the model are known, then it is optimal to use a static threshold policy - admit if the queue-length is less than a predetermined threshold and otherwise not. We propose a learning-based dispatching algorithm and characterize its regret with respect to optimal dispatch policies for the full information model of \cite{Naor}. We show that the algorithm achieves an $O(1)$ regret when all optimal thresholds with full information are non-zero, and achieves an $O(\ln^{3+\epsilon}(N))$ regret in the case that an optimal threshold with full information is $0$ (i.e., an optimal policy is to reject all arrivals), where $N$ is the number of arrivals and $\epsilon>0$.
translated by 谷歌翻译
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
translated by 谷歌翻译
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.
translated by 谷歌翻译
Generalizability of time series forecasting models depends on the quality of model selection. Temporal cross validation (TCV) is a standard technique to perform model selection in forecasting tasks. TCV sequentially partitions the training time series into train and validation windows, and performs hyperparameter optmization (HPO) of the forecast model to select the model with the best validation performance. Model selection with TCV often leads to poor test performance when the test data distribution differs from that of the validation data. We propose a novel model selection method, H-Pro that exploits the data hierarchy often associated with a time series dataset. Generally, the aggregated data at the higher levels of the hierarchy show better predictability and more consistency compared to the bottom-level data which is more sparse and (sometimes) intermittent. H-Pro performs the HPO of the lowest-level student model based on the test proxy forecasts obtained from a set of teacher models at higher levels in the hierarchy. The consistency of the teachers' proxy forecasts help select better student models at the lowest-level. We perform extensive empirical studies on multiple datasets to validate the efficacy of the proposed method. H-Pro along with off-the-shelf forecasting models outperform existing state-of-the-art forecasting methods including the winning models of the M5 point-forecasting competition.
translated by 谷歌翻译
我们为多机器人任务计划和分配问题提出了一种新的公式,该公式结合了(a)任务之间的优先关系; (b)任务的协调,允许多个机器人提高效率; (c)通过形成机器人联盟的任务合作,而单独的机器人不能执行。在我们的公式中,任务图指定任务和任务之间的关系。我们在任务图的节点和边缘上定义了一组奖励函数。这些功能对机器人联盟规模对任务绩效的影响进行建模,并结合一个任务的性能对依赖任务的影响。最佳解决此问题是NP-HARD。但是,使用任务图公式使我们能够利用最小成本的网络流量方法有效地获得近似解决方案。此外,我们还探索了一种混合整数编程方法,该方法为问题的小实例提供了最佳的解决方案,但计算上很昂贵。我们还开发了一种贪婪的启发式算法作为基准。我们的建模和解决方案方法导致任务计划,即使在与许多代理商的大型任务中,也利用任务优先关系的关系以及机器人的协调和合作来实现高级任务绩效。
translated by 谷歌翻译
当一家企业向另一家企业(B2B)出售时,购买业务由一组称为帐户的个人代表,他们共同决定是否购买。卖方向每个人做广告,并与他们互动,主要是通过数字方式进行的。销售周期很长,通常在几个月内。在寻求信息时,属于帐户的个人之间存在异质性,因此卖方需要在漫长的视野中对每个人的利益进行评分,以决定必须达到哪些人以及何时达到。此外,购买决定与帐户有关,必须进行评分才能投射购买的可能性,这一决定可能会一直变化,直到实际的决定,象征组决策。我们以动态的方式为帐户及其个人的决定分数。动态评分允许机会在长时间的不同时间点影响不同的单个成员。数据集包含与卖方的每个人通信活动的行为日志;但是,没有关于个人之间咨询的数据,这导致了决定。使用神经网络体系结构,我们提出了几种方法来汇总各个成员活动的信息,以预测该小组的集体决策。多次评估发现了强大的模型性能。
translated by 谷歌翻译
以前在外围防御游戏中的研究主要集中在完全可观察到的环境上,在该环境中,所有玩家都知道真正的玩家状态。但是,这对于实际实施而言是不现实的,因为捍卫者可能必须感知入侵者并估计其国家。在这项工作中,我们在照片真实的模拟器和现实世界中研究外围防御游戏,要求捍卫者从视力中估算入侵者状态。我们通过域随机化训练一个基于机器学习的系统,用于入侵者姿势检测,该系统汇总了多个视图,以减少状态估计错误并适应防御策略来解决此问题。我们新介绍性能指标来评估基于视觉的外围防御。通过广泛的实验,我们表明我们的方法改善了国家的估计,最终在两场比赛中的VS-1-Intruder游戏和2-Fefenders-VS-1-Intruder游戏中最终进行了外围防御性能。
translated by 谷歌翻译